

Introduction

- Cardiac surgical procedures have become less invasive, leading to lower likelihood of blood transfusion but preoperative blood ordering practices have not changed¹.
- Over ordering of blood products increases costs of patient care and wastes scarce blood resources¹⁻³.
- Creating an evidence-based maximum surgical blood ordering schedule (MSBOS) improves appropriate ordering of blood products^{1,2}.

Purpose

Purpose: To optimize the blood ordering process for cardiothoracic surgeries at the University of Iowa Hospitals and Clinics (UIHC)

- <u>Objective 1</u>: To develop a maximum surgical ordering schedule (MSBOS) for cardiothoracic surgical procedures.
- <u>Objective 2</u>: To implement the cardiac MSBOS at UIHC
- <u>Objective 3</u>: To decrease the crossmatch to transfusion ratio (C:T) for cardiothoracic surgical services at UIHC by 50% six months after implementation of the MSBOS.

Methods

Project was deemed not human subjects research

Initial data obtained for cardiothoracic procedures ('19-20)*:

- Procedure type
- Surgeon
- Estimated blood loss (EBL)
- Disposition (transfused, returned, wasted, released)
- Date of procedure
- Medical record number (MRN)

Data then categorized by surgical procedure and analyzed for:

- % transfused
- Median EBL Transfusion
- index
- Risk for major bleeding
- ≥ 4 units in > 10% of patients

MBSOS with procedure specific blood ordering recommendations based on Frank's algorithm using this institution specific data¹

• *Excluded data: surgeons no longer at UIHC, pediatric cases, and vascular procedures

Optimizing Blood Management in Cardiothoracic Surgery Lucille Mazzetta, BAN, RN, CCRN, SRNA-DNP student University of Iowa Hospitals and Clinics

Outcomes

Cardiac: Recommendations for Preoperative Blood Orders and Erythrocyte Transfusion Data

Case Category	Recommendation	n	% Transfused	Median EBL	Transfusion Index	Risk of Major Bleeding	C:Tratio	≥4Uin >10%
Transplant-Heart	4U	13	76.92%	500	8.23	Yes	1.43	Yes
Transplant-Lung	2U	31	51.61%	500	1.23	Yes	4.00	No
Minimally invasive valve	2U	144	3.47%	0	0.06	Yes	40.25	No
CABG and Valve	2U*	429	31.47%	0	1.02	Yes	3.38	Yes
Assist Device VAD	2U	34	35.29%	0	2.59	Yes	1.83	No
Assist Device impella/IABP/ECMO	4U	54	42.59%	50	1.43	Yes	3.83	Yes
Cardiac Major Vascular	4U	78	51.28%	0	2.44	Yes	2.62	Yes
ASD or VSD	4U	7	28.57%	0	0.43	Yes	9.33	Yes
Pericardium	2U	16	6.25%	0	0.06	Yes	40.00	No
Pacemaker/ICD	T&S	52	5.77%	25	1.04	No	3.56	No

Thoracic: Recommendations for Preoperative Blood Orders and Erythrocyte Transfusion Data

					Transfusion	Risk of Major		≥4Uin
Case Category	Recommendation	n	% Transfused	Median EBL	Index	Bleeding	C:Tratio	>10%
Esophageal	2U	106	7.55%	10	0.15	Yes	14.13	No
Sternal	2U	40	22.50%	0	0.40	Yes	7.88	No
Chest Wall	2U	36	8.33%	13.75	0.19	Yes	12.00	No
Thoracotomy-pneumonectomy	4U	8	12.50%	150	0.50	Yes	5.00	Yes
Thoracotomy all other procedures	2U	145	12.41%	25	0.32	Yes	8.15	No
Thorascopy	2U	322	4.35%	0	0.07	Yes	29.57	No
Mediastinoscopy	T&S	19	0.00%	0	0.00	Yes		No
Mediastinal exploration/washout	4U	53	58.49%	0	2.72	Yes	2.68	Yes
Scope procedures	T&S	17	5.88%	5	0.06	No	40.00	No

Tranfusion index = total number of RBC units transfused divided by total number of patients EBL = estimated blood loss; T&C = type and cross; C:T = crossmatch to transfusion \geq 4 U in > 10% = 4 or more units were transfused for more than 10% of patients for that procedure Grey box represents areas where C:T was unable to be calculated because 0 units were transfused

Evaluation

- 15 major categories with 40 subcategories of cardiothoracic surgical procedures are being performed at UIHC
- The categorization process was tedious and required surgical experts
- Almost all cardiothoracic procedures had a C:T above 2 indicating inefficient blood utilization
 - Transplants, assist devices, and cardiac/major vascular procedures had C:T ratios all only slightly above 2
 - Minimally invasive valve, pericardial, and scope procedures had C:T ratios of 40 or greater
- Opportunities exist to collaborate with postoperative inpatient blood management efforts
- Lack of EBL charted for most patients making calculations difficult
- Recommendations do not consider patient specific co-morbidities

- recommendations
- and decrease RBC waste and unnecessary laboratory testing
- MSBOS and adjustments made
- specialties at UIHC

Acknowledgements

I would like to thank Drs. O'Sullivan and Bair for their continued support and encouragement throughout this process. I would also like to thank Barbara Swanson and Dr. Susan Dasovich from the DeGowin blood center and Drs. Johnston and Rosol who offered guidance and expertise in MSBOS creation. Finally, Greg Vens for his help with the data analysis. There are no conflicts of interest.

Conclusions

Data analysis revealed areas for improvement and areas of appropriate preoperative T&C ordering

 This MSBOS offers practitioners a reference when ordering preoperative lab work and blood products.

Data and recommendations presented to cardiothoracic surgical team so order sets can be adapted to

• Implementation will improve C:T ratios

• C:T ratios should be monitored for each procedures after implementation of the

• Future projects can create MSBOS recommendations for other surgical

References

1. Frank, S. M., Rothschild, J. A., Masear, C. G., Rivers, R. J., Merritt, W. T., Savage, W. J., & Ness, P. M. (2013). Optimizing preoperative blood ordering with data acquired from an anesthesia information management system. Anesthesiology, 118(6), 1286-1297. doi:10.1097/ALN.0b013e3182923da0

2. Frank, S. M., Oleyar, M. J., Ness, P. M., & Tobian, A. A. R. (2014). Reducing unnecessary preoperative blood orders and costs by implementing an updated institution-specific maximum surgical blood order schedule and a remote electronic blood release system. Anesthesiology, 121(3), 501-509.

3. Alghamdi, S., Gonzalez, B., Howard, L., Zeichner, S., LaPietra, A., Rosen, G., Garcia, G., Lamelas, J., & Goldszer, R. (2014). Reducing blood utilization by implementation of a type-and-screen transfusion policy: A single institution experience. American journal of clinical pathology, 141, 892-895. DOI: 10.1309/AJCPX69VENSKOTYW